Intelligenza Artificiale: uno strumento che ‘crea’ o che ‘assiste’?

Nell’industria, la corsa all’innovazione tecnologica continua senza sosta. Negli ultimi tempi, la tecnologia su cui sono puntati i riflettori è l’Intelligenza Artificiale (AI) generativa, che promette di far compiere a chi la utilizza correttamente un salto decisivo per migliorare i propri processi, prodotti, servizi. Alla luce di ciò, chi progetta oggi può utilizzare con un sufficiente grado di sicurezza il design generativo integrato con l’AI? E, soprattutto, è possibile garantire una collaborazione di successo tra macchine e umani.

di Paolo Delnevo, Vice President PTC Southern Europe

In qualità di responsabile di un’azienda leader nel settore del software industriale, mi trovo spesso ad affrontare il seguente tema: in che modo possiamo efficacemente integrare l’Intelligenza Artificiale nei nostri processi? E, allo stesso tempo, quale ruolo dovrebbe giocare questa tecnologia per garantire che i nostri strumenti, le nostre soluzioni supportino concretamente i clienti nella crescita del loro business?


In altre parole, l’AI generativa che ruolo svolge: ‘creativo’ o di ‘assistenza’?
Oggi la tendenza è di considerare il design generativo come uno strumento metodologico di supporto, capace di assistere l’uomo in determinati compiti. Ad esempio, un ingegnere che intende apportare un miglioramento al prodotto chiedendo supporto all’AI mediante uno specifico prompt, riceverà da essa idee, suggerimenti o indicazioni su come implementarlo. Si badi, tuttavia, che tra le possibili domande che possono essere poste all’AI vi è anche la seguente: “Come posso migliorare il prodotto in ottica di sostenibilità?”. A quel punto, sempre che lo strumento sia in grado di fornire informazioni ‘spiegabili’, quindi affidabili, sarà lo strumento a proporre cosa fare: l’ingegnere dovrà quindi limitarsi a mettere in pratica le indicazioni ricevute. La conclusione, dunque, è che tutto è possibile: ma cosa è concepibile e, soprattutto, auspicabile?


A mio parere, l’obiettivo oggi è quello di riuscire a sfruttare questa fantastica risorsa per risparmiare tempo e aumentare l’impatto delle proprie attività. Si tratta quindi di alimentare opportunamente l’AI, in questo caso la propria specifica AI, e utilizzare la tecnologia generativa per individuare che cosa possa essere passibile di miglioramento: in merito alle attività da svolgere, al mercato, ai clienti, ai fornitori ecc.
Il design generativo non è di certo una novità. Nell’industria automobilistica, la metodologia generativa viene impiegata, ad esempio, per ottimizzare parti e componenti del veicolo al fine di ridurne il peso o migliorarne la resistenza. Maggiore è il numero degli scenari considerati e il numero di parametri presi in esame, maggiori sono le possibilità di sviluppare un prodotto di successo. In questo specifico contesto, l’AI è senza dubbio in grado di sfidare (e probabilmente battere) l’uomo nel trovare le migliori soluzioni. Eppure, è sempre difficile dire se l’AI assista o crei.


Approcciare il design di un prodotto utilizzando la tecnica generativa con il supporto dell’AI è infatti da considerarsi una collaborazione uomo-macchina, un dialogo che si instaura tra due parti e il cui fine è quello di creare componenti che, ad esempio, siano più leggere, resistenti, ecologiche. È proprio il dialogo a costituire la parte interessante della questione ed è sempre il dialogo che gli ingegneri e, in generale, gli operatori di sistema devono essere in grado di instaurare correttamente quando utilizzano le nostre soluzioni software. Per questo motivo, credo che sia sbagliato dualizzare il dibattito sull’AI quale strumento che ‘crea’ o ‘assiste’: il nocciolo della questione è infatti il modo in cui si è in grado di organizzare la conversazione con l’AI per raggiungere i propri obiettivi.
La rivoluzione dell’AI generativa potrà attuarsi solo se le aziende inizieranno a guardare ai propri dati e alla loro disponibilità con la necessaria attenzione. Affinché l’AI sia veramente efficace è infatti necessario alimentarla opportunamente, non solo con i dati appropriati, ma anche con i propri metodi di lavoro. La qualità dei risultati generativi è infatti proporzionale alla qualità dei dati utilizzati per addestrare i modelli. Solo così l’AI potrà dirsi affidabile, indipendentemente che si decida di definirla uno strumento creativo o di assistenza.

metal work
Contenuti sponsorizzati

Prodotti e servizi per l’automazione industriale 5.0

Il paradigma 5.0 affianca alla digitalizzazione nel comparto automazione i concetti di riduzione dei consumi energetici, centralità dell’uomo e resilienza della filiera produttiva. Con le sue soluzioni e i servizi, Metal Work è pronta a rispondere alle esigenze delle aziende.

Quaderni di progettazione

Il fenomeno del creep

Lo scorrimento viscoso (spesso chiamato con termine inglese: creep) è un fenomeno che porta alla deformazione di un materiale sollecitato da un carico statico quando operanti per lunghi periodi in ambienti ad alta temperatura. Tale fenomeno è presente in tutti

Metodologie di progettazione

Cambiamento climatico: una sfida per l’ingegneria strutturale

Gli ingegneri strutturali, nei prossimi anni, dovranno affrontare la sfida di progettare opere capaci di resistere a fenomeni atmosferici sempre più intensi e frequenti causati dal cambiamento climatico. Le normative, basate su dati storici, spesso non prevedono l’evoluzione di queste

Design thinking

Sensori giroscopici: funzionamento del giroscopio e applicazioni industriali

Il giroscopio è un dispositivo che permette di mantenere l’equilibrio e orientarsi nello spazio, sfruttando la rotazione. Da strumenti meccanici a sensori miniaturizzati nei nostri smartphone, questa tecnologia ha rivoluzionato la navigazione, l’aerospazio e molto altro. di Giorgio de Pasquale